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Theory of q-Deformed Forms. II. q-Deformed 
Differential Forms and q-Deformed Hamilton 
Equation 

Won-Sang Chung I 

Received August 29, 1995 

In this paper we introduce the q-deformed differential forms and quantum-algebra- 
valued q-deformed forms. We use these to obtain the q-inner derivative and 
investigate its properties. As a physical application we discuss the q-deformed 
Hamilton equation. 

1. INTRODUCTION 

Quantum groups provide a concrete example of noncommutative differ- 
ential geometry (Connes, 1986). The idea of the quantum plane was first 
introduced by Manin( 1988, 1989). The application of noncommutative differ- 
ential geometry to quantum matrix groups was made by Woronowicz (1987, 
1989). Wess and Zumino (1990; Zumino, 1991) considered one of the simplest 
examples of noncommutative differential calculus over Manin's quantum 
plane. They developed a differential calculus on the quantum hyperplane 
covariant with respect to the action of the quantum deformation of GL(n), 
so-called GLq(n). Much subsequent work has been done in this direction 
(Schmidke et al., 1989; Schirrmacher, 1991a,b; SchiiH~acher et aL, 1991; 
Burdik and Hlavaty, 1991; Hlavaty, 1991; Burdik and Hellinger, 1992; Ubri- 
aco, 1992; Giler et aL, 1991, 1992; Lukierski et al., 1991; Lukierski and 
Nowicki, 1992; Castellani, 1992; Chaichian and Demichev, 1992; Chung, 
n.d.-a,b). 
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In part I (Chung et  al . ,  1996) of this series we proved associativity of 
the q-deformed wedge product and showed that the q-deformed wedge product 
satisfies a particular commutation relation. 

In this paper we introduce the q-analogue of differential forms and 
discuss their properties. We define the q-deformed differential forms, quan- 
tum-algebra-valued q-deformed forms, and the q-deformed inner derivative. 
We use these results to obtain the q-deformed Hamilton equation. 

2. q-DEFORMED DIFFERENTIAL FORMS 

In this section we introduce the q-deformed differential forms and inves- 
tigate their properties. We define the q-deformed differential forms in terms 
of the q-deformed wedge product as follows: 

dx / Aq dxJ = ( - q ) d #  Aq dx / (i > j )  

dzc' Aq d.~ = 0 ( i , j  = 1, 2 . . . . .  n) (1) 

where the q-deformed wedge product Aq reduces to the usual wedge product 
when q goes to 1. The relation (1) can be written in the form 

dx i Aq d #  = (-q)e"J~dx~ ^q  d x  i (2) 

where the symbol P( i j )  is defined as 

P(/j) = I (i > j )  

P(/j) = 0 (i = j )  

P(/j) = - 1 (i < j )  

Let V be a vector space and A~V a space of the q-deformed p-forms 
over V We then introduce the basis dx t of APqV as follows: 

d.,d = d r '  ^ q - - -  ^q dx", ~ APqV 

Then, for the q-deformed p-form basis 

d ~  = dx/I ^ q - - -  ,'.. dx/p ~ A,~V 

and the q-deformed/-form basis 

dx  J = dx  i~ ^q . . .  ^q dx4  ~ AIqV 

the following commutation relation exists: 

d.r t ^q 

(il < iz < "'" < ip) (3) 

(il < iz < "'" < ip) (4) 

(JJ < J2 < "'" < j~) (5) 

dx J = E~Jtdx ' ^q  d.,d (6) 
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where 

E jI~ = __Eu 
&l 

E i v  , ,ipJl. , "it 

E J I" " "jill" ' "ip 

= (-q)ZP.,=I ~,=i t'Um.j,,t (7) 

Here the q-deformed Levi-Civita symbol Eiv-.w is defined as (Chung et 
al., n.d.) 

E l 2 . . .  N = 1 

E..qj... = ( - q ) E . V i . . .  for i > j  

The last relation of (7) holds because 

EtJt - Eil" " i p J l  Vl 

E j r  ' vIiI'" "it, 

( - -  q)EV,,, = 1 2~, = I P~i,,, j , , ) E j l .  Vli l. . .ip 

E~I. . Vii,...it, 

- -  - - n  = I P O m d n )  _ ( - q ) ~ = l  ,~/ - 

which shows that for the q --) 1 limit this becomes ( - 1 )  pt. Using this, we 
can prove the relation (6), 

d.fl Aq dx J 

. . . . .  d x i , )  = (dx/I Aq " Aq dx tp) Aq (dx jl Aq Aq 

= (--q)ZPm=l P(im,Jl)dxJl Aq d2d Aq (dx j2 Aq ' ' '  Aq d x  jl)  

= (-q)~P..=l ~l,:l P.md.)dxJ ^q drt  

Then an arbitrary q-deformed p-form a is given by the linear combination 
of the q-deformed p-form basis d r  t E APV." 

a = ~ a f lx  t ~ APqV (8) 
1 

= E Oti l '" ip dXi l  Aq " ' "  Aq dx ip  (9) 
il < ' '  " < i p  

The q-deformed p-form a is also written as 

1 ~ O£il,..it " d ~  1 Aq " ' "  Aq dxit ,  
ot - [P]! il'"'iP 
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where 

and 

~ .  . .ij. . . = ( - -  q -  2 )P( i ' J )c t .  - j i .  , . 

1 - -  Q - P  

[P] -- 1 - q-~ 

Using the commutation relation between the q-deformed p-form basis and 
the q-deformed/-form basis, we have the commutation relation between an 
arbitrary q-deformed p-form et 

a = ~ ctflx / E A~V (10) 
/ 

and an arbitrary/-form 13 

13 =  ,dx J A ' #  (l l) 
J 

This is written as 

o~ Aq [3 = (--q-2)Pl0( ~ Aq C0 (12) 

where 0 is a operator transforming the q-wedge product ^q into the q - t  
wedge product (Aq-0, that is, 

0 ( ^ q  ) = ^ q - I  ( 1 3 )  

Equation (12) is easily proved in a same way as given in Chung e t  aL (1996). 
In order to obtain the q-deformed Leibniz rule, we have the identity 

dx" Aq a = a , a  Aq d ~  (14) 

where a ,o  is defined as 

O~,a = 

and 

Z ( _ _ q ) p ( a , i l , i 2 , " "  , iN)OLi l i2 . . . i  N 
it<i T - . < i  N 

x ddt aq dy2 ^q . . .  ^q dx'N (15) 

N 
p(a, il " '"  ip) = - ~ P ( a ,  ik) 

k=l 

Equation (16) is easily proved: 

! 

: ~ (--q)Z,P,,=l P ( a , i m l d x  I A q  d x  a 
/ 

= c~,~ ̂ q dx ~ 

(16) 
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where 

oL,,~ = ~] a t ( - q )  x{;'=' n"'i")dx I 

I,J 

= doL Aq [3 "Jr ~.d 
1,1 

= doL Aq 13 + 

= doL Aq 13 + 

= det ^q 13 + 

In particular, for e~ E A ° we  get 

d((x Aq 13) 

-- da ^q 13 + ~ a ^q d~GB 
o 

= d~x Aq [3 + ¢X Aq d13 

Then for ~b E LaP we have the following q-deformed Poincar6 lemma: 

d2~ = 0 whenever 3i3j = qe°"i~3jOi 

~1a.13]d~ ̂ q d~ ^q dx 1 

~] a ;GI3X-q)  xG1 n",i,,~d~ ^q d.~ ^q dx 1 
LJ 

~] ott(--q) x~=j e(a'im)d.x 1 Aq Oa13jdx a Aq dX 1 
l,J 

X OL:'l¢a Aq d ~ O  a Aq 13 
a 

I 

In particular for a ~ A ° we get 

dx" ^q ~ = ot ^q d ~  

which means 

Ot.,a = C~ 

Using the relation (16), we obtain the q-deformed Leibniz rule for the 
q-deformed forms, 

d(a ^q 13) = da  ^q [3 + ~] a. , ,  ^q d~c9~13 (17) 
a 

The derivation of  eq. (17) is then given by 

d(a ^q 13) 

= d ~ ~d~'  ^~ 13dx 1 
I,J 

= ~, d(a,139 ^q d J  Aq &J 
•,] 

= ~] (dar13s + ald13]) A t dx / ^q KX J 
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By definition we get 

drb = ddPil,,qpdX i! A q ' ' "  Aq d x  ip 

= Oa~Jil...ipdX a Aq d x  il Aq " '"  Aq dxip 

Then we have 

d2dp = oba,,d~il.. ,ipdx I' ^q  dx" ^q dx il h e "'" Aq dx  ip 

= (--q)PIb'a)abOadpi I. . . ipdx a Aq dx  h ^q dx il Aq "'" ^q 

where we used 

dx t' aq dx" = (-q)e(b'~')dx-~ Aq dx b 

If 

~ip 

ObO a = qP(a,b)OaOb 

then we obtain 

d2dp = --OaObf~il...ipd.g a ^ q  d x  b Aq d x  il Aq " '"  Aq dX tp 

= -d 2 {b  

which means that 

d2(b = 0 

3. q-DEFORMED QUANTUM ALGEBRA-VALUED FORMS 

The purpose of this section is to generalize q-deformed forms to q- 
deformed forms with values in quantum algebra g. Let A~(V, g) be a space 
of q-deformed p-forms over V with values in quantum algebra g. Then the 
product of an element belonging to A~(V, g) and an element belonging to 
Aq(V, g) is defined in terms of  the qummutator 

where 

[+, tHq = ~] +. ^~ ¢~[ro, L]# (18) 
a,b 

(b = ~ O&T., E APq(V, g) (19) 

+ = ~ ~orb, ~ Aq(V, g) (20) 
b 

and the qummutator is defined as 

[A, B]q = q A B  - q - I B A  (21) 
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Here T,, and Th mean the generators of the quantum algebra g satisfying the 
qummutation relation 

[T,,, Tb] q = fabcTc (22) 

wheref,~,~, is a structure constant. This type of  quantum algebra is usually called 
a Cartesian version of  quantum algebra. Then the graded anticommutativity is 
deformed into 

[qb, 4]q = - ( - q - 2 ) " ' 0 ( [ 4 ,  (~)]q-I) (23) 

The Jacobi identity is deformed as follows: 

[[+, +]q, X]q + ( -q-2)- '~ '+~0([[4 ,  xlq, +]q-') 
+ (-q-2)-s~P+r~O_.([[ X, ~b], 4]) = 0 (24) 

where we used the q-deformed Jacobi identity for the basis of  g, 

[[T,,, Tb]q, Tc] q + [[Tb, To]q, Ta]q-' + [[Tc, T,,], Tb] = 0 (25) 

and ~, 4, and × belong to At(V, g), A~(V, g), and Aq(V, g), respectively. 

4. q - I N N E R  D E R I V A T I V E  

Our next subject is the q-deformed inner derivative, which we will call 
the q-inner derivative from now on. Note that the word derivative refers to 
a purely algebraic property, the q-deformed Leibniz rule. For any vector field 
X of the underlying vector space V there is one inner derivative ix, which 
acts on q-deformed forms lowering their degree by one unit, 

ix: APV  -+ At~ - I V 

# a - > i x + ,  X ~ V 

(ixdp)(Xi . . . . .  X p - t )  = qb(X, Xl . . . . .  X p - l )  (26) 

where APV means the set of  all q-deformed p-forms over V. In particular, if 
qb is a q-deformed l-form, then we have 

ix+ = ix( qb~da "~) 

= + f l x ~ ( X )  

= ,b , ,x"  

= +(X) (27) 

where we used the summation convention over the repeated indices and 

dx"(X) = X ~ 
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If 4) is a q-deformed 2-form, then we find 

ixd?(Y) = ~ +~bdr ~ Aq dxb(X, Y) 
a<b 

= E d?ab{ d'Xa(x')dxb(Y) --q-2dxa(y)dxh(X) } 
a<b 

= ~ Xad?,,bdx~,Cy) _ q-2 ~ ,  Xbd?.bdxo(y) 
a<b a<b 

= ~ ,  X~+obdx~(r3 
a,b 

where we used 

(28) 

(e) Finally, 

i2x = 0 

We will check the property (c) for the case that d? e A2q and ~ e Aq t, where 

d? = ~ d?.b dx~ ^q dxb, d?ab = --q-2d?ba 
a<b 

, =  
¢. 

d?ab = --q-2d?ba (a > b) (29) 

This can be generalized to the case of  the q-deformed p-form 4); then we have 

ixd?(Xl . . . . .  Xp- l )  

= E E )dxil (Xl) Aq''" dxip- ' (Xp_t)  (30) il'i2"'"'ip-I ( J SJd?jil...ip_l Aq 

Immediate properties of  the q-inner derivative are as follows. 

(a) ix is a linear mapping. 
(b) ix is linear in X, 

i x + v =  ix + iv 

iux = aix, a e R 

(c) The q-deformed Leibniz rule is 

ix(d? ^q t~) = ix+ ^q t~ + (_q-2)pd? ^q ixO, d? e mPqVq 

(d) We have 

ixlix2 = - qix2ixt 
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Then we find 

i x (+ Aq I~J)(Y~ Z) 

aKb c 

= ~] ~ +,b,,.[a~(x) d~(r) dx"(Z) 
a<b c 

- q -Zdx" (Y)  dxb(X) dx"(Z)  

-- q-2dxa(S) dxb(Z) dxC(Y) -t- q-4dxa(Y) d,rb(Z) dxC(X) 

-t- q-4d)f(Z) dxb(X) dxC(y) 

-- q-6dxa(Z)  dxh(Y) dxc(X)], X, Y, Z ~ V 

Here the first and second terms in right-hand side of the above equation give 

iX~ (Y) Aq t]/(Z) 

the third and fifth terms give 

- q -  2ixdo(Z) Aq I~J( Y) 

so adding two results leads to 

ixqb ^q ~(Y, Z) 

Similarly, the fourth and sixth terms give 

(_q-2)2~9 Aq iXt~I(Y~ Z) 

The general proof of  (c) is given in the Appendix. 
Now we prove property (d); we have 

(ix~ixzdO)(X3 . . . . .  Xp) = (ix2+)(Xl,  X3 . . . . .  Xp) 

= +(x2,  x~, x3 . . . . .  x A  

and 

(ix~ix,+)(x3 . . . . .  x~) = ( ix ,+)(x2,  x3 . . . . .  xp)  

= +(x~, x2, x3 . . . . .  x A  

Since qb ~ A~ is q-alternating, we have 

(ix~ ix2dO) = - q(ix2ix ~ d?) 

Property (e) is easily proved from property (d). 
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5. q-DEFORMED SYMPLECTIC MANIFOLD AND 
q-DEFORMED HAMILTON EQUATION 

In this section we discuss the q-deformed symplectic manifold and a 
quantization of a q-deformed classical Hamiltonian system. We start with 
the q-deformed symplectic two-form 

f l  = dO = dp ^q dx dfl = 0 (31) 

where 0 is called a q-deformed canonical l-form and is given by 

0 = p dx (32) 

Here (x, p) means the local coordinate of the q-deformed symplectic manifold 
Mq. Let TMq and T*Mq be the q-deformed tangent bundle and q-deformed 
cotangent bundle, respectively. Then for an arbitrary element of TMq given by 

0 0 
X =  a - - +  b - -  (33) 

Op ax 

ixfl = -q -Zb  dp + a dx (34) 

Proof The proof follows from the definition of the q-inner derivative 
ix. Let l l  = dp ^q dx; then 

ixfl = ix(dp ^q dx) 

= ixdp Aq dx Jr" ( - q - 2 ) d p  Aq ixdx 

= X(p) dx - q-2X(x) dp 

= a dx - q-Zb dp (35) 

Similarly, for an arbitrary element of T*Mq given by 

to = f dp + g dx (36) 

we have 

l ) - ' ( f  dp + g dx) = g ~p - q2f (37) 

it holds that 

0 
ixf~ = - q - 2 d p  for X = -  (38) 

ax 

Proof From (34), we have 

0 
ix f l  = dx for X = -  ap 
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Using these, we have 

~ - ' ~ d p  + g dx) = f~-~(dp) + gl~-'(dx) 

= -q"f-~x + g Op (39) 

Thus we reach the following theorem. 

Theorem. The fundamental symplectic q-deformed 2-form Yt on the q- 
deformed cotangent bundle Pq = ~Mq generates the Hamilton equation 
of motion 

OH ~ OH 
P - Ox' X = q- ~p (40) 

Proof The differential of the Hamiltonian H(x, p) is a q-deformed 
l-form on Pq, 

,iI-I = + o H @  
Ox Op 

(41) 

By (39) we have 

f -'af af a , a f  o - q -  - -  - -  ( 4 2 )  
Ox Op Op Ox 

Hence 

OH 0 OH 0 
l-l-ldH _ qZ - X (43) 

Ox Op Op Ox 

The vector field X = - ~ - I d H  determines a system of differential equations 
on Pq. Finally we have the q-deformed Hamilton equations of motion 

OH 

Ox 

,? = q2 OH (44) 
Op 

Therefore we infer the analytic expression for the q-deformed Poisson bracket 
on the set of observables on Pq to be induced by the q-deformed symplectic 
structure on T*Mq 
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(l~-tdjOg = {f, g}q 

_ afag 
Ox Op 

Equation (45) means that 

q2 Of Og (45) 
Op Ox 

{f, g}q = _q2{ g,f}q_, (46) 

6. CONCLUSIONS 

In this paper we have newly defined the q-deformed differential forms 
and quantum-algebra-valued q-deformed forms. In the latter case, we adopt 
the Cartesian version of the quantum algebra. Using these definitions, we 
have obtained a q-deformed inner derivative and discussed its properties. As 
a physical application, we have discussed the q-deformed Hamilton equation 
and q-deformed Poisson bracket, where we use the properties of q-deformed 
inner derivative. We think that much will be accomplished in this direction. 
In particular we hope that the q-deformed Lagrangian equation of motion of 
the q-deformed mechanics will be constructed in the near future. 

A P P E N D I X  

In this appendix we prove that for qb E A~ and ~ ~ Atq, 

ix(+ ^q +) = ix,+ ̂ q t~ + (-q-2)p~b Aq ixt~ 

We have 

ix(+ ,',q ~)(X2 . . . . .  G.t) 

= ( +  ,',q ~ ) ( X l ,  X2 . . . . .  G+~) 

= E E +,,.-.,,,%+,...,,,+, 
il <.  . "<i p ip+ l <" + "<ip+l 

x d e ' / , q  " "  ^o dV~+'(Xl . . . . .  Xp+3 

= E E +,,...,,%+,...,,+, 
i l < ' " < i  p i p + l < ' " < i p ÷  l 

X E SgnqCr d~l(Xcr~l)) " "  d~p+t(X,r(p+t)) 
o'~Sp+ I 

: E E +,,...,,,%+,- .,,+, 
i l < ' " < i  p , p+ l  <"  "'<ip+ I 

X E sgnq~' 
or' ~ Sp+ l,ct:' ( I )=  l,~'(i)=o'( i).i ¢ I 
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x dx/~(X0 dx'2(X,,.<2~) . - .  dx~o(X~,cr~) 

x d2,,+'(X~.~p+~) ...dxi~+J(X~,~p+l~) 

+ (_q-2)p ~ ~ +i,...ipOio+,...ip+t 
il<...<i p ip+l<,..<ip+ I 

X Z sgnq(r" 
¢~ " ~ Sp+ l,o-"( p + 1)= I.o-"(i)=cr(i),iq:p+ i 

/ d~l(X,,"~ l)) "'" dxi°(X,,"(p)) 

× dxip+l(Xi)dxip+z(X~,,~p+2~) ""dxip+l(X,~,(p+l)) 

where we used the following properties: 

Sgnqff' = sgnqff 

and 

sgnqg" = q-R~cr"(t)'"~"(P+t))Et;,ii~.+(e,~p+l ) 

~-R(¢rt i ) -- -o'(p) or(p+ 1 )= 1,o'(p+2),* * "¢r(p+l)) K'I" " "p+t 
= t/ " " I..,o-( I ),...,rr(p),o-(p + 1 )= 1 ,cr(p+2),....cr(p+l) 

[ r,-2"~pz,-R(ct{1L...,~r(p),ff(p+2),...rx(p+l))K;'l,...4~,p+2,...,p+l 
~,--tt l t t  " ~ff(IL...,fffp)dy(p+2),....cr(p+l) 
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