International Journal of Theoretical Physics, Vol. 35, No. 6, 1996

Theory of q-Deformed Forms. II. g-Deformed
Differential Forms and g-Deformed Hamilton
Equation

Won-Sang Chung!
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In this paper we introduce the q-deformed differential forms and quantum-algebra-
valued g-deformed forms. We use these to obtain the q-inner derivative and
investigate its properties. As a physical application we discuss the g-deformed
Hamilton equation.

1. INTRODUCTION

Quantum groups provide a concrete example of noncommutative differ-
ential geometry (Connes, 1986). The idea of the quantum plane was first
introduced by Manin (1988, 1989). The application of noncommutative differ-
ential geometry to quantum matrix groups was made by Woronowicz (1987,
1989). Wess and Zumino (1990; Zumino, 1991) considered one of the simplest
examples of noncommutative differential calculus over Manin’s quantum
plane. They developed a differential calculus on the quantum hyperplane
covariant with respect to the action of the quantum deformation of GL(n),
so-called GL,(n). Much subsequent work has been done in this direction
(Schmidke et al., 1989; Schirrmacher, 1991a,b; Schirrmacher et al., 1991;
Burdik and Hlavaty, 1991; Hlavaty, 1991; Burdik and Hellinger, 1992; Ubri-
aco, 1992; Giler et al., 1991, 1992; Lukierski er al., 1991; Lukierski and
Nowicki, 1992; Castellani, 1992; Chaichian and Demichev, 1992; Chung,
n.d.-a,b).
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In part I (Chung et al., 1996) of this series we proved associativity of
the g-deformed wedge product and showed that the q-deformed wedge product
satisfies a particular commutation relation.

In this paper we introduce the g-analogue of differential forms and
discuss their properties. We define the q-deformed differential forms, quan-
tum-algebra-valued g-deformed forms, and the q-deformed inner derivative.
We use these results to obtain the q-deformed Hamilton equation.

2. ¢-DEFORMED DIFFERENTIAL FORMS

In this section we introduce the q-deformed differential forms and inves-
tigate their properties. We define the q-deformed differential forms in terms
of the g-deformed wedge product as follows:

dx' nydxl = (—q)dx! A, dx’ (i>))
dx' nydx' =0 GLj=1,2,...,n) ¢))

where the g-deformed wedge product A, reduces to the usual wedge product
when ¢ goes to 1. The relation (1) can be written in the form

dx' ny dx) = (—g)PPdx! A, dx’ 2)
where the symbol P(ij) is defined as
P@ij) =1 >
P =0 (=)
P(ij) = —1 <)

Let V be a vector space and A}V a space of the g-deformed p-forms
over V. We then introduce the basis dx’ of A2V as follows:

de! = dd't Ay Ay dXP e ALV (1 <ip < <ip) 3)
Then, for the g-deformed p-form basis

d.x'=dxj’Aq-'-AqujPeAZV (i <ip < <ip) )
and the q-deformed /-form basis

dxl:..-dx.ii,\q.../\quj,e/\gv h<ja<- - <j) &)
the following commutation relation exists:

dx' A, dx’ = Efjdx! A, dx' (6)
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where
E” — ﬂ
J E

J

_ Eil"'ip.il“’fl

Ejl"'flil"'ilx

SP oS Pl
= (—q)"m»l =1 Pliym.jn) (7)

Here the g-deformed Levi-Civita symbol E; ..., is defined as (Chung et
al., nd.)

Ep.n=1
The last relation of (7) holds because
Ei i
E_Il‘; — 1 pl1" N
Ejr"j:ir“ip
\~p = S‘;’l= illlv 'Il
= (mgyim=t Fmr P )EJI"'jlil"'in
Ejl"'jliu'"ip

= (—q)zfn=l Eﬁs=! Plim.jn)

which shows that for the ¢ — 1 limit this becomes (— ). Using this, we
can prove the relation (6),

dx! Ay dx!
= (dxil Ayt Ay dxip) Ag (dxfl Ayt Ay d.xj’)
= (—g)m=1 PlimiDdx)t A, dx! Ag (X2 Ay -+ A, di)
= (—g)Em=1Zh=1 Pliming! A dy!

Then an arbitrary g-deformed p-form a is given by the linear combination
of the g-deformed p-form basis dx’ € ASV:

a =Y add e AV (8)

H

= Y e, dxi Ay e A, dip (9

i< <ip

The gq-deformed p-form « is also written as

a=— 3 a;,...,-pdxi’ Ay Ay dx
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where
o = (—g )P, .
and
_1l—qg7"
Pl =1 p

Using the commutation relation between the q-deformed p-form basis and
the q-deformed /-form basis, we have the commutation relation between an
arbitrary g-deformed p-form «

o= ; adx' € ALV (10)
and an arbitrary /-form 3
B=;B,dxfe ALV (11
This is written as
an,B=(—gYOB A, @) (12)

where Q is a operator transforming the g-wedge product A, into the g~ '-

wedge product (A1), that is,
O(r) = Ag! (13)

Equation (12) is easily proved in a same way as given in Chung et al. (1996).
In order to obtain the g-deformed Leibniz rule, we have the identity

q9

dx’ Ay & = Qg Ay dX° (14)
where o, is defined as
Oyg = 2 (—g)Pleiiz Ny
1<y -<iy
X dxit Ay dx’? /\q"'/\qd_xj” (15)
and
N
pla, iy ==+ i,) = ~ D, Pla, iy) (16)
k=1

Equation (16) is easily proved:
dx* A, Z adx!
= 2 (—q)zgl=l P(“-im)dxl Ay aé
7

= Qg Ay dX°
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where

' :
Oyg = 2 al(—q)snzr«! P(‘“m)dxl

!
In particular for a € AJ we get
dx’ nga = o Ay dx?
which means
Qyp = @

Using the relation (16), we obtain the g-deformed Leibniz rule for the
g-deformed forms,

d(a A, B) = da Ay B+ D) ctgy Ay dX3,B (17)

The derivation of eq. (17) is then given by
d(a ~y B)
=d > add A, Bdx’
I

= IEJ: d(e,B)) Ay dx! A, dx!

= IEJ: (daB; + oudB)) Ay dx! A, dx’!

=dangB + IEJ: 0B dx Ay dxX! Ay dx!

=dang B+ IEJ: a,aaBJ(—q)Eﬁ"' Plaimdx! A, dx® A, dx?
=dang B+ I}; a,(—q)zﬁ'=' Paimdxl ny 0.Bsdx Ay dx’
=dang B +§)a*a/\qu"aa/\,,[3

In particular, for a € AJ we get
d(a ~, B)
=dar B+ D an,ded,p

=dan, B+ an,dB
Then for ¢ € Laf, we have the following q-deformed Poincaré lemma:

d*¢ =0 whenever 9;9; = ¢"9"9;0;
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By definition we get
db = dby..; dx" A, - A, dx?

= 0abiy i, dX° Ay XA, e A, dXT

Then we have
d’e = c')bﬂud)il..,,-pd,\” Ay dx Ay dXV Ay - A, di
= (—g)P"90,0,;. i, dx" Ay dX® A, dXV A, A, dx

where we used

dxt n, dx* = (—g)PPdx® A, dx*
If

30, = g7 0,9y
then we obtain
d’b = —0,05bi,...,dX A, dx® ngdx'V Ay e A, dxie
= _.a'?-d)

which means that

d*¢ =0

3. ¢-DEFORMED QUANTUM ALGEBRA-VALUED FORMS

The purpose of this section is to generalize g-deformed forms to gq-
deformed forms with values in quantum algebra g. Let A%(V, g) be a space
of g-deformed p-forms over V with values in quantum algebra g. Then the
product of an element belonging to AJ(V, g) and an element belonging to
AV, g) is defined in terms of the qummutator

[d)v ‘b]q = Eb d)a /\q ‘bb[Tm Tb]q (18)
where

d=>0b.T,, €AV, g (19)

P = ; T, € AV, g) (20)

and the qummutator is defined as

(A, B], = gAB — q"'BA 2n
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Here T, and T, mean the generators of the quantum algebra g satisfying the
qummutation relation

[Tm Tb]q = f;.lbcTe (22)

where f,;,. 1s a structure constant. This type of quantum algebra is usually called
a Cartesian version of quantum algebra. Then the graded anticommutativity is
deformed into

(&, ¥], = —(—¢7" 0. d),-1) (23)
The Jacobi identity is deformed as follows:

(b, ¥l X, + (=g~ H 7901, X G,

+ (=g ) "0({Ix, ¢, W) = 0 (24)
where we used the g-deformed Jacobi identity for the basis of g,
UT, Tp)p Ty + Ty, T Tl + ([T T}, T,] = 0 (25)

and &, Y, and x belong to ALV, g), AV, g), and A{(V, g), respectively.

4. q-INNER DERIVATIVE

Our next subject is the q-deformed inner derivative, which we will call
the g-inner derivative from now on. Note that the word derivative refers to
a purely algebraic property, the q-deformed Leibniz rule. For any vector field
X of the underlying vector space V there is one inner derivative iy, which
acts on g-deformed forms lowering their degree by one unit,

ix: ApV — A7V
b = ixd, XeV
(lxd))(xl, "-vxp"l) = Cb(x, le ...,X,,_l) (26)

where A7V means the set of all q-deformed p-forms over V. In particular, if
¢ is a g-deformed 1-form, then we have

ixd = ix(badx?)
= dudx*(X)
= ¢, X°
= ¢(X) 27

where we used the summation convention over the repeated indices and

ax’(X) = X4
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If ¢ is a q-deformed 2-form, then we find
ixd(V) = 3 bupdx® Ay dX(X, 1)

a<b
= 2,, bas{ AXAA(Y) — g 2dx(Y)dxb(X))
a<<
= 2 Xbudx"(Y) — g7 3, XPdadx*(Y)
a<b a<b
= Eb X dxt(Y) (28)
where we used
¢ab = —q—zd)ba (a > b) (29)
This can be generalized to the case of the q-deformed p-form ¢; then we have
%010, NN, (RY

= 3 (E Xf¢jil~--.-,,-n)"""'(xl>%'“Aqu"ﬂ-wxp-l) (30)

iieip=1\ J
Immediate properties of the g-inner derivative are as follows.

(a) ix is a linear mapping.
(b) iy is linear in X,

ixey = ix + iy
i,x = aiy, acR
(c) The g-deformed Leibniz rule is
ix(d A W) = ixd A, + (—q7V A i, b e AV,
(d) We have
ix|ix2 = —qixix,

(e) Finally,

iy =
We will check the property (c) for the case thatd e AZand § € A}, where

b= 2 bupdx® A, dx’, bap = —G by,

a<b

=3
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Then we find
ix(d A, WY, Z)
= E E ¢al)lbcd-xu Ny dxb Ny d_x‘(X, Y, Z)

a<b ¢

= 3 3 dupldx(X) dx(Y) dx(Z)

a<b ¢
— @7 %dx(Y) dx"(X) dx(2)
— g7 dx(X) d(Z) dx(Y) + g~ *dx(Y) dx(Z) dx“(X)
+ q7%dx(2) dx"(X) dx(Y)
— ¢7d(Z) AP dEX)), X, Y ZeV
Here the first and second terms in right-hand side of the above equation give
ixb(Y) A W(2Z)
the third and fifth terms give
=g 2ixd(Z) Ay W(Y)
so adding two results leads to
ixd Ay (Y, 2)
Similarly, the fourth and sixth terms give
(=g 9% A, ixd(Y, 2)

The general proof of (¢) is given in the Appendix.
Now we prove property (d); we have

(ix, i, D) (X5, - . ., Xp) = (ix,d) X1, X, ..., X))
=dXy, X, X5, ..., X))
and
(ixylx, D) X3, ..., Xp) = (i, )Xo, X3, ..., X))
=Xy, X2, X5, ..., X))
Since ¢ € AJ is q-alternating, we have
(ix,ixzd)) = “Q(ixeld))
Property (e) is easily proved from property (d).
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S. ¢-DEFORMED SYMPLECTIC MANIFOLD AND
q-DEFORMED HAMILTON EQUATION

In this section we discuss the g-deformed symplectic manifold and a
quantization of a g-deformed classical Hamiltonian system. We start with
the g-deformed symplectic two-form

QO =do =dpn, dx dQ =0 (31)
where 8 is called a q-deformed canonical 1-form and is given by
0 = pdx (32)

Here (x, p) means the local coordinate of the g-deformed symplectic manifold
M, Let TM, and T*M, be the q-deformed tangent bundle and g-deformed
cotangent bundle, respectively. Then for an arbitrary element of TM, given by

X=aqa 9 + b 9 (33)
ap ox
it holds that
il = —qg *hdp + adx (34)

Proof. The proof follows from the definition of the g-inner derivative
iy. Let ) = dp A, dx; then

ix§) = i(dp ~, dx)
= ixdp A, dx + (—q Ddp A, ixdx
= X(p) dx — q7’X(x) dp

=adx~ q*bdp (35)
Similarly, for an arbitrary element of T*M, given by
w=fdp + gdx (36)
we have
4 9 2 0
O (fdp +gdy =g —qf (37
P ox
Proof. From (34), we have
. d
lxﬂ = dx for X =—
ap
. _ -2 — d
ixQ = —q%dp for = — (38)
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Using these, we have

Q7 (fdp + g dx) = fQ7(dp) + g™ '(dx)

.. 9 9
:——~—-+— —_
qfax gap (39)

Thus we reach the following theorem.

Theorem. The fundamental symplectic q-deformed 2-form () on the g-
deformed cotangent bundle P, = T*M, generates the Hamilton equation
of motion

_oH , OH

, 4
ox *T4 ap (40)

p':

Proof. The differential of the Hamiltonian H(x, p) is a q-deformed
1-form on P,,

dH=a—F!d.x-+-£{dp 41
ox ap
By (39) we have
Q“ldfzg.j.ri_qz_a[-a_ (42)
dx op ap ox
Hence
dx ap ap dx
The vector field X = —{)~'dH determines a system of differential equations

on P,. Finally we have the q-deformed Hamilton equations of motion

.. _OH

P dx

i=gd (44)
ap

Therefore we infer the analytic expression for the q-deformed Poisson bracket
on the set of observables on P, to be induced by the q-deformed symplectic
structure on T*M,
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(Q7'dhg = (£ g},

A

(45)
dx dp ap dx

Equation (45) means that
{fv g}q = _42{8’f}q" (46)

6. CONCLUSIONS

In this paper we have newly defined the q-deformed differential forms
and quantum-algebra-valued q-deformed forms. In the latter case, we adopt
the Cartesian version of the quantum algebra. Using these definitions, we
have obtained a g-deformed inner derivative and discussed its properties. As
a physical application, we have discussed the q-deformed Hamilton equation
and g-deformed Poisson bracket, where we use the properties of q-deformed
inner derivative. We think that much will be accomplished in this direction.
In particular we hope that the q-deformed Lagrangian equation of motion of
the q-deformed mechanics will be constructed in the near future.

APPENDIX
In this appendix we prove that for & € A? and ¢ € Al,
(b Ay U) = ixd A b+ (g7 Ay il
We have
ix(d Ay U)X, -y Xpu)
= (b A, WXL X, .o, Xpu)
= 2 2 ¢il~--i,,¢f,,+.~~-i,,+1

i|<"'<ip ip+l<"'<ip+l

X dxi' /\q e A(l deF+I(X|, e ey Xp+l)
E ¢i|---i‘,¢ip+|---ip+[

i< <p g 1< Ripay

X 2 5gn,0 dx'(Xoqy) *+ dxP* (X y(pr)

oeSp+!

2 2 4:)"l'""p"bi[rﬁ-l"'ip-H

i< -<ip ip+1<' <ip+t

i

X > sgn,o’
o' €Spria (VLo () =ali% 1
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X dx''(X)) de'(Xy2) *** dXr(Xy )
X dxj”ﬂ(xa'(pﬂ)) Tt dxi"ﬂ(xa'(pﬂ))

+ (=g > iy Wi |- ipas

(< <p dp4 ) <0 <ipt g

"
X ) E sgn, o
a ESP+1.0'"(p+ D=lag"()=a)#p+1

X dxj‘(Xg»“)) e dxiP(Xg:»(p))
X d-xjp+'(Xl)dxip+2(xo'"{p+2)) e dxip+l(xa"(p+l))
where we used the following properties:

sgn,o' = sgn,o

and

n _ _—Ra"(l +1 L-
Sgnqa =gq (a"(1)---a"(p ))E “57 LoD

— L —Ra(l), - a(pralp+ D=1la(p+2). -alp+pt

q pep ? P E S apratp+ =100+ D...atp+1)
= 2yp o~ R(o(1}.....0¢ + 20 (p+ L. g pt2...,

_( q )pq oD-a(platp ap )E 'pprr(p)u(p+2) ..... al{p+)
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